Aste Online

0. Informazioni generali

Realizzato da: Paolo Brusa (codice persona: 10835369, matricola: 211863)

Data colloquio: 5/08/2025 Traccia 1

Software usati:

HeidiSQL

Intellij IDEA

Apache Tomcat

Firefox

Librerie esterne:

Gson 2.10.1

JSTL Core and Fmt

Documentazione versione pure HTML

1. Progettazione database e schema ER

Dopo un'attenta lettura e valutazione delle informazioni utile per definire e progettare una base
di dati ho trovato 5 entita e 6 relazioni:
(grassetto: PRIMARY KEY; FK: FOREIGN KEY)
Entita:
e Utente: username, pwd, nome, cognome, indirizzo
e Articolo: codice, proprietario(FK), nome, descrizione, immagine path, prezzo
e Asta: idasta, prezzoiniziale, rialzomin, scadenza, stato
e Offerta: usnutente(FK), dataora, offerta, idasta(FK)

Serviva pero qualcosa per relazionare gli articoli alle aste. Ci possono essere diverse opzioni
tra cui salvare gli id dell’asta nell'articolo stesso oppure creare un nuovo record. o ho optato
per creare una tabella di supporto lasciando cosi le responsabilita separate nel database,
aumentando la scalabilita e la manutenibilita. Cosi bisogna fare un join in piu per determinate

query ma non lo considero un problema considerando che con le altre opzioni risultavano
record molto piu pesanti a livello di memoria.

e Articolilista: codarticolo(FK), idasta(FK)

Per fare un focus sulla scalabilita banalmente questo approccio con poche modifiche permette
in futuro di scegliere che un articolo possa appartenere a piu aste.

prezzo

dataora - iniziale rialzomin scadenza
usnutente idasta
’\ i r / /o stato
1:1 0:N O:N
offertao—_| Offerta — Asta
|
idasta ©
1:1 idasta
crea Articolilista
codarticolo
O:N

username
O:N
Vtente ‘ Articolo
pde
nome d/ codice o/</ J) X’
proprietario prezzo

cognome T nome descrizione iMmaginepath
indirizzo

1.1 Da schema ER a concettuale

Il passaggio da ER a concettuale in questo progetto avviene in maniera molto intuitiva da che
come abbiamo visto prima non ci sono relazioni molti a molti:

Offerta Asta
A A 4
(username dataora,offerta,idasta,offre,per] ﬁd sta,prezzoiniziale,rialzomin,scadenza,stato,crea]

y
a

Articolilista
[codarticolo,idasta,contiene]
3

vV Utente Articolo

[username,pwd,nome,cognome,indirizzo] [codice,proprietario,nome,descrizione,immaginepath,prezzo,crea,contenuto]

Ho aggiunto in rosso le relazioni presenti nello schema ER.

Dettagli generali utili:
Utente:

MName

L L

username
pwd
nome
cognome

indirizzo

Offerta:

L9 B L

Name

usnutente

1

2 offertaprezzo
3 idasta
4

dataora

Name
id
prezzaoiniziale
rialzomin
scadenza

stato

Articolilista:

MName

P4 1 idasta
. /I 2 codarticolo

Articolo:

 §

Mame
codice
proprietario
nome

descrizione

o o W o =

immaginepath

prezzo

Datatype
VARCHAR
VARCHAR
VARCHAR
VARCHAR
VARCHAR

Datatype
VARCHAR
INT
INT
DATETIME

Datatype
INT

INT

INT
DATETIME
ENUM

Datatype
INT
INT

Datatype
INT
VARCHAR
VARCHAR
VARCHAR
VARCHAR
INT

Length/Set
50

50

50

50

100

Length/Set
50
11
11

Length/Set
11
15
1

‘attiva’,'chiusa’

Length/Set
11
11

Length/Set
11

50

50

255

255

11

Unsigned

00000

Unsigned

O

000

Unsigned

ooooo

Unsigned

O
O

Unsigned

000000

Allow NULL

00000

Allow NULL

0000

Allow NULL

00000

Allow NULL

O
O

Allow NULL

0o00aoo

Zerofill

00000

Zerofill

od

oo

Zerofill

00000

Zerofill

O
O

Zerofill

000aoo

Default

MNo default
MNo default
Mo default
Mo default

MNo default

Default
No default

No default

Default

AUTO_INCREME...

MNo default

‘attiva’

Default

Default

AUTO_INCREME...

Mo default
No default
No default

No default

1.2 Beans e DAO

Come abbiamo visto nel data base, ci sono dei vincoli da rispettare come ad esempio la
lunghezza e la non nullita di certi dati 1 quali vengono verificati nelle servlet prima di essere
passati con dovute precauzioni ai DAO che si occupano dei rispettivi Beans.

I Beans e 1 DAO servono per “nascondere” il database alla connessione separando inoltre cosi
la logica applicativa da quella di accesso e storage. Un bean ¢ una classe che rappresenta in
modo esaustivo 1 dati di un oggetto presente nel database con alcuni accorgimenti. Per
esempio nella classe Utente che serve per memorizzare dati dalla tabella omonima non ho
messo nessun attributo inerente la password e non si pud neanche usare un set o un get perché
essa ¢ giusto che sia privata nel db e deve rimanere tale. | DAO invece servono per interrogare
il database, utilizzandoli deleghiamo cosi dalla servlet la logica di accesso nascondendo alla
rete 1l database.

Offerta

t, Date)
String

Date

(String)

Nell'immagine soprastante viene visualizzato il diagramma UML dei Beans e vediamo
appunto che hanno 1 propri attributi e rispettano quelli del database. In pit sono presenti solo
metodi di getter e setter 1 quali alcuni non servono neanche ma ho deciso di lasciarli per
scalabilita in futuro.

Da notare che ci sono 3 peculiarita, la prima quella piu evidente ¢ che ho aggiunto una classe
enum (State) di supporto. Essa serve per gestire lo stato della asta (aperta,chiusa) in modo tale
da rendere il tutto piu esplicito e avere la possibilita di fare determinati controlli nelle servlet
ma soprattutto per memorizzare in modo consono lo stato dell'asta. La seconda aggiunta non
presente nel db € che in asta c’¢ anche un attributo timeleft, esso serve per memorizzare il
tempo rimanente dalla data di scadenza. Per calcolarlo mi servo di una classe di supporto
definita in filterAndUtils che permette di effettuare il calcolo con il date.now() del server. Ho
utilizzato il formato String permettendo cosi di gestirlo come json senza ulteriori conversioni e
soprattutto inviando tutto con un'unica variabile. L’ultima cosa da evidenziare ¢ 1’attributo
path in articolo. Esso non memorizza proprio il path dell'immagine ma solo il nome con il
corrispettivo formato come ¢ presente nel database, per accedere a il vero e proprio file lo
combina con la dir corrispettiva nel fileSystem e lo preleva.

ArticoloDAO
UtenteDAO

(Connection)
nnection)

(String, String, String, String, int) void connectio >onnection

(List<Integer >) List<A stUtente (String, String) Utente

a(int) =14} er (String) Utente

(Shle)

AstaDAO
OffertaDAO

Connectio (Connection)

C —.[1 .F_-
t, List<Integer >, String) voic - 2rtef dicate (String) Li

E!r':'TIl'II':'J > =1t List«Offerta >

a(int, String) Asta sertOfferta (String, int, int)

eyword (String, String) List<Asta>
SEolE —.((] STrlﬂgJ

Aste (String) List<Asta>

L’immagine soprastante invece rappresenta I’'UML dei DAO. Come possiamo notare in
ognuno di essi € presente 1’attributo connection che serve per creare una connessione con il db
nel momento della creazione nelle Servlet. Per preservare l'atomicita nel DAO vengono

chiamate singole operazioni al db rendendo cosi evidentemente che non c’¢ possibilita di
fallire operazioni oltre a quella effettuata gestita con un adeguato try catch.

Per prevenire invece un attacco SQL injection ho utilizzato il pattern con il prepared
statement.

Esso infatti prevede, come si vede in figura, una sostituzione del parametro che serve alla
query con un ‘?’ facendo cosi poi possiamo inserire i1 dati convertiti correttamenti con 1 metodi
che offre PreparedStatement scongiurando cosi le injection di qualsiasi forma (da un accesso
non autorizzato, alla eliminazione di tabella).

1.3 Controllers € Views

I controllers ovvero le Servlet che servono per effettuare le operazioni dell'utente sono il core
dell'applicazione. Per crearle ho usato due pattern specifici: il Single Responsibility Principle
(SRP) e il Post-Redirect-Get (PRQG). 1l primo definisce in modo chiaro la funzionalita della
servlet e appunto permette di mantenere una singola responsabilita, ¢i sono due casi in cui
penso di non averla rispettata ovvero in Offerte e in DettaglioAsta dove ho messo sia doGet
che doPost (ovviamente il primo si occupa di lettura e il secondo di scrittura e soprattutto
inerente allo stesso oggetto). Mentre il pattern PRG serve per garantire il corretto
funzionamento dell'app web evitando situazioni spiacevoli all'utente che la utilizza (ad
esempio rinvio di un form per colpa di un refresh della pagina da parte dell utente).

Ogni Servlet controlla una view ovvero un jsp. La servlet si occupa di inviare le informazioni
e il jsp le organizza per visualizzarle in modo corretto.

Dalla specifica ho localizzato 6 view (ovvero 6 jsp) con le rispettive servlet integrate da un
filtro e delle utils per qualche doPost.

Login — login.jsp

Homepage — homepage.jsp

Vendo — vendo.jsp

DettaglioAsta — dettaglioAsta.jsp

Acquisto — acquisto.jsp

Offerte — offerta.jsp

Essendo che in generale html non permette di natura di inviare dati tra una pagina e 1’altra ho
adottato una strategia per inviare gli errori evitando di “sporcare” il Url.

if (id == null || offerta == null || offerta.length() >
request.getSession().setAttribute(- essage

]

response.sendRedirect(request.getContextPath() +

Con questa prima immagine possiamo vedere come vado a gestire gli errori in un doPost dove
sono costretto a usare una redirect (nei doGet uso setAttribute con forward senza la sessione).
L’unico parametro che non viene perso durante una redirect ¢ appunto la sessione permettendo
di passare cosi parametri, I’importante pero logicamente ¢ toglierlo immediatamente dopo
appena viene utilizzato. Anche 1’user logicamente viene memorizzare in questo modo
permettendo di creare una sessione valida.

String errorMessage = (String) request.getSession().getAttribute(
if (errorMessage != null) {
request.getSession().removeAttribute(

request.setAttribute(e essage errorMessage) ;

Questo ¢ come viene gestita la visualizzazione e 1’eliminazione dell'attributo.
Oltre a quello appena detto vorrei fare 3 accorgimenti su delle implementazioni utilizzate:

package it.polimi.tiwpaolobrusa.controllers.filterAndUtils;

import

ss LoginFilter implements Filter {

public i oFil (Serv v 3 les s rvletResponse, FilterChain filterChain) throws I0Exception,

Http quest

Http L onse response = (Http

String path st.getRequestURI().

if ((path. Login") || path.equ s/style.css")) 2st.ge 5 5) null) {
filterChain.doFilter(request, resp

}

else if (request.getSession().getAttribute(er") !s null && request.getSession(false) != null && (Arrays.aslList(p
filterChain.doFilter(request, response);

if (requ getSession().getAttribute(er") I= null && ssion(b: false) !'= null) {
response.sendRedirect(request.getContextPath() +

response.sendRedirect(request.getContextPath() +

Per evitare che un utente possa accedere al sito senza effettuare 1'autenticazione ho aggiunto
una classe WebFilter che permette appunto di filtrare tutti gli Url in base al fatto se una
persona ha la sessione valida settata con un user.... Essendo il server I’unico che puo settare la
sessione (JSESSIONID) ovviamente siamo sicuri che se presente 1’attributo user ¢ perché ¢
stato autenticato con successo. Dopo 30 minuti senza utilizzo la sessione scade in automatico
anche se la persona non ha effettuato il logout.

</context-param>
ion-config>
<session-timeout>30</session-timeout>
sion-config>

<welcome-file-list>

<welcome-file>Login</welcome-file>

</welcome-file-list>

Un altro accorgimento ¢ la classe utils TimeLeft, essa permette di calcolare il tempo rimanente
di un asta e salvarla in formato String permettendo una condivisione facilitata.

package it.polimi.tiwpaolobrusa.controllers.filterAndUtils;

import
L 4

fFt(Li
LocalDateT.
t te) {
util.Date utilDate = new java.util.Date(asta.getDate().getTime()
n(now, uvtilDate.toInstant().atZone(Zoneld.systemDefault()).toLocalDateTime());

+ duration.toHoursPart() + ":" + duration.toMinutesPart() + + duration.toSecondsPart()

L'ultima implementazione che volevo mostrare era come ho gestito la scrittura delle immagini
¢ la lettura. Ho utilizzato una cartella (o che crea se non esiste) sul File System permettendo di
memorizzare le immagine fisiche cambiando il nome del file per renderlo univoco, il database
memorizza solo il nome di quel file nell'attributo immaginepath. Il nome del file ’ho creato
usando la classe UUID con il metodo .RandomUUID() che permette di generare codici alfa
numerici del tipo XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXxXXxXxX. Facendo cosi la probabilita che
due nome file siano identici ¢ considerabile nulla.

Part image = request.getPart(
if(image == null || (!i

request.getSession(ttribute(

request.getContex

return;
}
String path JID() + + image.getContentType().replace(
File upload
if (!upload.

upload.mkdir();

Session().setAttribute(e essage",

sendRedirect(request.getContextPath() +

String filePath = dir + File. ator + path;
image.write(filePath);
ArticoloDAD aDAO = new ArticoloDAO(con);
try {

DAO.addArticolo(n, d, o, path, prezzo);
} catch (SQLException e) {

request.ge ssion().setAttribute(sage", e.getCause().getMessage());

response.sendRedirect(request.getContextPath() + "/Vendo");

Per prelevare le immagini salvate e farle visualizzare ho optato per creare una servlet dedicata
alla visualizzazione delle immagini (SRP). Ogni volta che si genera una tabella in un jsp se
serve anche I'immagine semplicemente fa una richiesta intrinseca con 1’url per ogni immagine,
se dovesse dare errore (ovvero non riceve I’immagine) ¢ il jsp che se ne occupa e restituisce al
posto dell I’immagine una stringa “errore”.

EWebServlet()
public class ImageHandler extends HttpServliet {
@Serial

private static final long serialVersionUID = ;

private static final String dir System.getProperty() + File.se

public void doGet(HttpServletRequest req, HttpServlietResponse resp) throws ServletException, IOException {
String path = reqg.getPathInfo();
if(path == null || path.isEmpty()) {
|eturnﬂ
I
String contentType = getServletContext().getMimeType(path.substring(
File image = new File(dir, path.substring());
if(!image.exists()){
return;
I
if (contentType == null) {
return;
F
Image imagel = ImagelO.read(image);
int height = ;
int width = ;
imagel = imagel.getScaledInstance(width, height, Image.SCALE_S TH);
BufferedImage imageb = new BufferedImage(width, height,
imageb.getGraphics().drawImage (imagel, . . null);
resp.setContentType(contentType);
ImageI0.write(imageb, path.substring(path.lastIndex0f()+1), resp.getOutputStream());

Per completezza, ho deciso di inserire anche un uml completo del server

Utente Offerta

(5ting, Sting, String, Suing) orerta(Sting, nt, Dato)

UtenteDAO

DettaglioAsta AddArticolo

i

o dispatche

« e : TR ——— Getfrupser se " " pr—
quest, HipServlaResporse) o i g : 0

e oPcetltpServiatRequest, HtpServlaResponse) vaid

T g aeet o et(Ftepserviesiegquest , HipServiethaspanse | o

Homepage ImageHandler LoginFilter TimeLeft

imel i)

1.4 IFML Diagram

login.jsp

wForm ()
field: usernane, pud
Subt

homepage.jsp

click
wForm
Vende button .
Acquisto button .
click aFOrm
. Logout button

(

slists
AsteAperte
«Datagindings aste

«listn
Astechiuse
«DataBindings aste

selected

acquisto.jsp

submit
) o
field: search

alistn «lists
aste fud
«Datasinding» aste «DataBinding» aggiud

selected T selected

dettaglioAsta.jsp

aDetailsn

. Asta
DettaglioastaDocet «Dataginding» asta

aLists .
Articoli DettaglioAstaboPost (closeAsta)
«DataBinding» articoliasta
Addarticolo
. click

aForms
closeAsta button

alists
offerte

«DataBinding» offerte|

wlists alists
articoliasta offerte
[oataBindings articol] | | [eoatakindings offerte]

.-
offertaDoPost

«Forms
field: offertaprezzo

Ho trascurato di esplicitare 1 bottoni per tornare alla homepage nelle varie pagine.

1.5 Sequence Diagram

Il primo evento scatenato da un utente ¢ 1’accesso alla propria homepage attraverso la

schermata di login (login.jsp).

sd login I

Login UtenteDAO request.getSession() Homepage
I

I
1: doGet() .’ 2: getUtente(user,pwd)(

I
I
I
I
I
I I
| 3: setAttribute("uJIer", username)() I
. "]
I
I
|
I
I
I
I
I

I
I

4. redirect /[Homepage() |
' 1
I
I I
I I
I I

Una volta trovati nella Homepage la servlet invia i dati alla pagina (questa procedura la faro
vedere solo per la homepage dato che ¢ sempre uguale), tutti 1 bottoni per tornare alla
homepage funzionano cosi.

sd homepage)

Homepage homepage.jsp

1.1: forward() bﬁ
|
I
I
|
I

1: doGetf()

Dalla Homepage possiamo selezionare o Vendo o Acquisto:

sd vendo J

AstaDAO | ArticoloDAO | | request | | vendo.jsp
1: doGet() 'J_ i . [
1.1: getAste(session .getAtmhute(“user“))()l

1.3: sefAttribute("aste", aste)()

1.4: setAftribute("articoli", articoli)()
|

1.5: forward()

T

|
}
|
|
|
|
|
[

Dopo aver selezionato vendo come nell'immagine sopra, possiamo creare nuovi articoli
oppure nuove aste e accedere se no a un asta che abbiamo gia aperto o chiusa.

sd addArticolo J

AddArticolo ArticoloDAO Vendo

[
1: doPost() ’l

[
I
1.1 addArticoIo(n,d,o,path,prezzo)()' |

1.2 redireglct /Vendo() ' |

sdcreateAsta J

CreateAsta ArticoliDAD AstaDAO Vendo

1: doPost() le_ :

1.1: getArticoli{cods)()

E— a i

1.2: addAsta(stream(arti co|i)_sum,mi nbid,date))() jj

1.3: addArticoliAsta(idAsta, cods, $ession.getAttribute("user"))() > |
|

1.4: redirect /Vendo()

sd dettaglioAstaGet J
DettaglioAsta AstaDAO | | OffertaDAO | | ArticolcDAO | | UtenteDAO | | request | | dettaglioAsta.jsp

1: doGet() L l ‘ l ‘

1.1: getAsta(idasta session.getAttribute ("user”,

T
| |
I |
I |
I |
| |
T I |
1.3: getArticoliByAsta(idasta)()) L
gethiico Byholal dusty f j_l |
|
| o
I

e Lo Lo
| 1.4 gelWinner(winner,gatUsnlllser())()
I I

e et o= fo -

1.5: setAttribute('asta”, asta); setAtiyibute("offerte”, o); setAttribute{"articoli", a); sefAtiribute("utente”, u); setAttribute("offertaVingente", winner)()

| | 1.6: forward() | |
I I I I
| | | |
| | | |

»

!

ey

Da Dettaglio Asta si puo usare il metodo post clickando su chiudi per chiudere un'asta che sia
gia scaduta.

sd deﬂaglioAstaFost)

DettaglioAsta

AstaDAO

DettaglioAsta?idasta=idasta

I |
1: doPost() o | |
P 1.1: closeState(idasta, session.getAttribute("user") i

1.2: redirect /DettaglioAsta?idastia=idasta()

—_————————

L’altra opzione era la pagina Acquisto, essa permette anche di ricercare aste da nome o
descrizione. L’url corrispondente di ricerca sarebbe /Acquisto?search=keyword

—— =

sdacquisto J
1: doGel() ‘ | | ‘ l
1.1: getOfferte Aggiuficate(session.getAttribute("user"))L| | ‘ |
jJ | \ |
1.2: getAstaByKeyword(keyWord, request.getSessign().getAtiribute("user”}}() ‘! } :
T

o d] | |
1.3: setAttlibute("aste" aste)() | | |
1.4: semnribthle("aggiud",aggiud)() | | |
I J |
1.5: forward() | |
| \ 'u

| \
| \ |
| \ |
| \ |
| \ |

Da acquisto si puo poi andare a visualizzare 1’asta con le offerte oppure le tue aggiudicazioni

senza visualizzare il form per I’offerta

sd offertaGet I

AstaDAO | ArticoloDAO | | OffertaDAO | | request | | offerta.jsp
I

I ! !
1: doGet() | ‘ . . | | | | |
1.1: getState(idasta,session.getAttribute("user")il
/Offerta? - I I : :
idasta=idast | | [~ T T T T T T T o
Eegi 1.2: getArticoliByAsta(idasta)() .l | | |
| I | |
é 7777777777777777777777777777
1.3l getOfferta(idasta)() o | |
I I | |
77 | |
1.4: sefAttribute("stato”, p); setAtiribute("articoli”, articofi); setAttribute("offerte”, offerta);() w | |
L
| I I |
1 1.5: forward() | |
| I I |]
| I | |
T | I | |
I I I I
I I I I

Come ho accennato prima si puo anche effettuare un offerta con il doPost all’asta selezionata.

sd offertaPost I

Offerte OffertaDAO Offerte
I

1: doPost()

1.2: redirect /Offerta?idasta=idasta()

I
1.1: insertOfferta(rsession.getAttribute("user"), offertaprezzo, idasta)() '[II
i
I
I
I
I
I
I
I
I
I
I
I
I

Oltre ai diagrammi del funzionamento effettivo dell'applicazione ne abbiamo alcuni che si
possono definire di utilita come il logout e imagehandler

sd logout J

Logout request Login
I . I I
! 1: getSession() - |
€ ———— - . |
2: session.removeAttribute("user")() -l |
3: session.invalidate() > |
I
I

T
4: redireqt /Login() ’D

sd ImageHandler)

ImageHandler FileSystem paginaRichiedente.jsp

| |
1: doGet() ’i |

I

I

1.1: new Flle(dir, nomefile() |

/Image/nomefile |
I

< ____________
1.2: ImagelO.write(imageb)()
I "]
I
|
I
I
I
I
I
|
I
|

Nei diagrammi di rete inoltre non ho aggiunto gli errori ma perché li gestisco tutti nello stesso
modo (come spiegato precedentemente) e ho fatto un diagramma generale separato

sd errorMessagePatlem)

Serviet request

I |
LE PJ- 1.1: session.removeAttribute("errorMessage")() :H
|
|
|
|
|

if
errormessagels
Present

1.2: setAttribute("errorMessage”, condizione)()

1.3: forward()

2.1: session.setAttribute("errorMessage”, condizione)() g |
if errorCondition ﬁ
2.2: redirect /Serviet()

Documentazione versione JavaScript
2.1 Introduzione

A livello server nella versione viene cambiato solo I’invio dei dati i quali vengono prima
formattati in stringa json e vengono inviati alla view attraverso la libreria Gson. E’ stata
aggiunta una servlet in piu ovvero AsteVisitate la quale serve per inviare le aste che sono
richieste all'apertura della homepage, nel prossimo paragrafo verra spiegato meglio.

Un altra cosa che cambia a livello di server ¢ la gestione degli errori infatti ora si limita a
inviare un messaggio di successo o fallimento e sara direttamente il javascript che si occupa
della gestione dell errore mostrando il fallimento con il messaggio allegato per tot secondi.

2.2 Analisi modifica specifica

Modifiche dalla versione HTML non ci sono ma ci sono delle aggiunte tra cui avere
I’applicazione web single page ¢ memorizzare 1’ultima azione dell'utente ovvero creare asta o
visitare un asta nella sezione acquisto salvando il suo id. Per effettuare queste operazioni ho
utilizzato il localStorage di javascript associato al currentUser che viene comunicato
direttamente dal server, mentre per creare la single page ho usato un HTML template passato
all’interno del javascript il quale attiva o disattiva/inserisce HTML all’interno.

2.3 Dettaglio Progetto JS

I1 javascript ¢ progettato per modellare il DOM che sono 1 template dell HTML.

I1 Js ¢ strutturato in modo tale da rispettare il pattern module e anche MVC e ho utilizzato una
modalita di programmazione molto simile a Java. Ho creato un IIFE, il quale non espone cosi
nulla all’esterno tranne la funzione init che inizializza tutti 1 moduli e i controller. I moduli
creati sono:

StorageModule: che permette la gestione della data di scadenza delle informazioni
memorizzate e verifica la disponibilita del localstorage e espone anche metodi per prelevare e
scrivere dati (dati per salvare ultima azione o aste visitate).

UserData: permette di salvare le azione svolte attraverso lo StorageModule, sottolineo che ho
impostato che le aste visitate al massimo 20, ma potenzialmente possiamo metterne fino a
quando riesce a gestirne la memoria.

Ho scelto di usare il localStorage per una questione di capienza ma soprattutto per scambi di
rete, se avessi scelto 1 cookies avrei dovuto portarli dietro a ogni chiamata/risposta.

ApiModule: gestisce 1 metodi get e post ajax passandogli un endpoint.
TemplateModule: preleva 1 template dal HTML e modifica 1 dati inviandoli nuovamente in

modo dinamico con il supporto delle classi renderer che gestiscono cosa mostrare/disattivare.
Oltretutto templatemodule sanitizza anche per evitare attacchi xss.

function Bani

In poche parole andiamo a forzare il tipo testuale al contenuto dinamico.

Po1 abbiamo 1 controller che gestiscono le chiamate ajax per la sezione corrispondente, ogni
controller si puo dire che gestisce le pagine della versione HTML. Mi vorrei soffermare su due
in particolare 1 quali servono nella versione single page.

NavigationController: serve per gestire le varie schermate e fare in modo quindi che attraverso
1 bottoni si attivano e disattivano 1 template corrispondenti.

EventController: serve per centralizzare e inizializzare gli eventi click e submit facendo cosi
possiamo gestirli in questa classe senza delegare alle classi corrispettive.

2.4 Sequence Diagram

I sequence diagram non cambiano in modo significativo a parte la gestione errori che come
detto prima non esiste piu e per il fatto che adesso non esistono piu redirect ma soltanto invio
di json.

sd asteVisitate J

AsteVisitate AstaDAO spa.js

. - | |
1: AJAX GET(ds)) . 1 1. geiAsteBylds(astelds)()

N P N N T
se fallisce invia fallimento

I
|
|
|
1.2: response.getWriter().write{gson.toJson(jsonResponse))()
| "]

Questa ¢ la nuova servlet che viene utilizzata quando viene chiamato Startup di spa.js che
permette cosi di visualizzare le aste viste precedentemente oppure di visualizzare la pagina
vendo. Gli altri sequence diagram non li riporto dato che sono uguali agli altri con solo la
modifica della tipologia di chiamata e risposta. L’unica che conviene comunque analizzare ¢ la
servlet Homepage.

http://spa.js

sd homepagejs)

Hompage request home.html

| |
1: doGet() ’J_ ‘ ‘ |
1.1: sessmn.getAttnbute("user")()r

nella response viene settato

1.2: include(request, response)() ’I-—rl
il windows.CURRENT_USER

Come vediamo adesso la home page non si occupa di far visualizzare solo il HTML come
prima che serviva solo per visualizzare il jsp, adesso prima di tutto richiede I’utente che poi
andra a scrivere direttamente nel html in modo tale che il js lo possa prelevare, infatti usa
include per includere anche cio che ¢ stato aggiunto al HTML

2.5 IFML Diagram

localStorage
.-.

Home . htm1

e
aliste i
asteAperte -eChiu: . «Forms
| «oatapincing» aste | [« inding» field: search
~

slected

«ists
aste
«Forms .
feld: NomeArticolo, Descrizione, Immagine, PrezzoBase | «DataBinding» aste |

«Form wlists wli
field: checkbox, minBid, dataScadenza articoliasta
Ed]ataBindingD ar‘ticuli «DataBinding» offerte)

«Details»
asta

«DataBinding» asta

«wists
articoli

‘DataBinding» artl:ul

() (]

La differenza tra quello pure HTML e questo JS sta nel fatto appunto che esiste una singola
pagina la quale viene modificata ogni qual volta che viene effettuata un operazione.

	Aste Online

